Publications

One way to look this up is via Google Scholar

A detailed list is also provided below. <click to expand/collapse>

2021

Kar, Kohitij. A computational probe into the behavioral and neural markers of atypical facial emotion processing in autism. bioRXiv (2021)

Kar, Kohitij. Visual neuroscience in the age of big data and artificial intelligence. In Big Data in Psychiatry# x0026; Neurology (pp. 287-304). Academic Press (2021).

Kar, Kohitij, and James J. DiCarlo. “Fast recurrent processing via ventral prefrontal cortex is needed by the primate ventral stream for robust core visual object recognition.”   Neuron (2021).

MIT NewsCBMM videoNeuron Preview article

2020

Rajalingham, Rishi., Kar, Kohitij., Sanghavi, Sachi., Dehaene, Stanislas., & DiCarlo, J. James. The inferior temporal cortex is a potential cortical precursor of orthographic processing in untrained monkeys. Nature Communications, (2020).

MIT newsCBMM video

Kar, Kohitij, Ito, Takuya, Cole Michael, and Krekelberg Bart. “Transcranial alternating current stimulation reduces BOLD adaptation and increases functional connectivity” Journal of Neurophysiology (2020).

Neuro Forum article

Tremblay, Sébastien, …..Kar, Kohitij., …..DiCarlo, James., Platt, Michael. “An Open Resource for Non-human Primate Optogenetics ” Neuron (2020).

Penn TodayScience article

Schrimpf, M., Kubilius, J., Hong, H., Majaj, N. J., Rajalingham, R., Issa, E. B., Kar, Kohitij… & DiCarlo, J. J. (2020). Brain-score: Which artificial neural network for object recognition is most brain-like?. BioRxiv, 407007. (2020)

Simons Foundation

2019

Kar, Kohitij., Kubilius Jonas., Schmidt, Kailyn., Issa, Elias., and DiCarlo, James. Evidence that recurrent circuits are critical to the ventral stream’s execution of core object recognition behavior.” Nature Neuroscience (2019).

MIT news,  CBMM video

  • Bashivan, Pouya*, Kar, Kohitij*, & DiCarlo, James. Neural Population Control via Deep Image Synthesis.Science (2019) [* denotes equal contribution]

MIT newsCBMM videoTrends in Neurosci article

2018

Rajalingham, R.*, Issa, E.*, Bashivan, P.,  Kar, K., Schmidt, K., and Dicarlo J: Large-scale, high-resolution comparison of the core visual object recognition behavior of humans, monkeys, and state-of-the-art deep artificial neural networks. Journal of Neuroscience (2018)

McGovern MIT news

Conferences:

  • Kar, Kohitij., Kubilius Jonas., Schmidt, Kailyn., Issa, Elias., and DiCarlo, James. Evidence that recurrent circuits are critical to the ventral stream’s execution of core object recognition behavior.”bioRxiv, 354753, 2018.
  • Bashivan, P.*, Kar, K.*, & DiCarlo, J. (2018). Neural Population Control via Deep Image Synthesis. bioRxiv, 461525.
  • Nayebi, A.*, Bear, D.*, Kubilius, J.*, Kar, K. , Ganguli, S., Sussillo, D., and DiCarlo, J. J., and Yamins, D. Task-Driven Convolutional Recurrent Models of the Visual System.” arXiv , 1807.00053.
  • Kohitij Kar, and James DiCarlo. Chemogenetic down-regulation of macaque V4 responses produce reversible deficits in core object recognition behavior. SFN (2018). Poster
  • Kohitij Kar, Kailyn Schmidt, James DiCarlo. Linking image-by-image population dynamics in the macaque inferior temporal cortex to core object recognition behavior.Cognitive Computational Neuroscience (2018).
  • Pouya Bashivan*, Kohitij Kar*, James DiCarlo. Neural Population Control via Deep ANN Image Synthesis.Cognitive Computational Neuroscience (2018).
  • Jonas Kubilius*, Kohitij Kar*, Kailyn Schmidt, James DiCarlo.Can Deep Neural Networks Rival Human Ability to Generalize in Core Object Recognition?Cognitive Computational Neuroscience (2018).
2017

Kar, Kohitij*, Duijnhouwer, Jacob, and Krekelberg, Bart. “Transcranial alternating current stimulation attenuates neuronal adaptation.” Journal of Neuroscience (2017)

Conferences:

  • Kar, K., Kubilius, J., Issa, E., Schmidt, K., and DiCarlo, J: Does the primate ventral stream need cortical feedback to compute rapid online image-by-image object identity? Neuroscience 2017 Abstract(Nanosymposium; to be presented), Washington DC. Abstract
  • Rajalingham, R., Issa, E., Schmidt, K., Kar, K., and Dicarlo J: Feedforward Deep Neural Networks Diverge from Humans and Monkeys on Core Visual Object Recognition Behavior. Cognitive Computational Neuroscience (CCN) 2017Paper , Poster
  • Kar, K., Kubilius, J., Issa, E., Schmidt, K., and DiCarlo, J: Evidence that feedback is required for object identity inferences computed by the ventral stream. COSYNE 2017, Salt Lake City, Utah. AbstractPoster
2016

Kar, Kohitij*, and Krekelberg, Bart. “Testing the assumptions underlying fMRI adaptation using intracortical recordings in area MT.” Cortex (2016).

Editorial comment

Conferences:

  • Rajalingham, R., Issa, E., Kar, K., Schmidt, K., and DiCarlo J: Image-grain comparison of core object recognition behavior in humans, monkeys and machines. Neuroscience 2016 Abstracts. San Diego, CA: Society for Neuroscience,(2016). Poster
2015


Kar, Kohitij*. Commentary: On the possible role of stimulation duration for after-effects of transcranial alternating current stimulation. Frontiers in Systems Neuroscience (2015)9, 148.

Conferences:

  • Kar,K., Wright, J., and Krekelberg, B:”Effects of transcranial alternating current stimulation on human BOLD responses during visual motion adaptation”. OHBM’s 2015 Annual Meeting. AbstractPoster
  • Yinghua L, Kar K, and Krekelberg B: Transcranial alternating current stimulation strengthens learning of color-orientation associations. Neuroscience 2015 Abstracts. Chicago, IL: Society for Neuroscience, 2015AbstractPoster
  • Kar,K., Wright, J., and Krekelberg, B:”Effects of transcranial alternating current stimulation on human BOLD responses during visual motion adaptation”. Brain Stimulation and Imaging Meeting 2015 Poster
  • Lafon, B., Liu, A., Minas, P., Kar, K., Bikson, M., Friedman, D., Krekelberg, B., Parra, L.”Direct experimental validation of computational current flow models with intracranial recordings in human and non-human primates.” NYC Neuromodulation 2015Abstract
2014

Articles:

  • Kar, Kohitij* and Krekelberg Bart. “Transcranial alternating current stimulation attenuates visual motion adaptation.” Journal of Neuroscience (2014). 
  • Kamila E. Sip*, David V. Smith, Anthony J. Porcelli, Kohitij Kar, Mauricio R. Delgado. “Social closeness and feedback modulate susceptibility to the framing effect.” Social Neuroscience (2014). 

Conferences:

  • Kar, K., Duijnhouwer, J, and Krekelberg, B: “tACS-What goes on inside? The neural consequences of transcranial alternating current stimulation.” Brain Stimulation 7.2 (2014): e12. AbstractPoster
2013

Kar, Kohitij*, and Wright, Jessica. “Probing the mechanisms underlying the mitigation of cognitive aging with anodal transcranial direct current stimulation.” Journal of Neurophysiology (2013)

Conferences:

  • Kar, K., Duijnhouwer, J, Krekelberg, B: Transcranial electrical stimulation mitigates motion adaptation in V1, MT, and MST neurons of awake, behaving macaques. Neuroscience 2013 Abstracts. San Diego, CA: Society for Neuroscience, 2013AbstractPoster
  • Kar,K., Duijnhouwer, J. and Krekelberg, B: Transcranial alternating current stimulation affects motion adaptation in V1 and MT neurons in awake, behaving macaques. Rhythmic Dynamics and Cognition Conference, 2013AbstractPoster
  • Kar,K., Duijnhouwer, J. and Krekelberg, B: Transcranial electrical stimulation affects adaptation of MT/V5 neurons in awake behaving macaques. Journal of Vision 2013, VSS abstracts.AbstractPoster
2012

Articles:

  • Kar, Kohitij*, and Krekelberg, Bart. “Transcranial electrical stimulation over visual cortex evokes phosphenes with a retinal origin.” Journal of Neurophysiology (2012).

Conferences:

  • Kar,K., and Krekelberg, B: Effects of transcranial electrical stimulation on human motion detection. Journal of Vision 2012, VSS Abstracts. AbstractPoster
2011


Kar K., Krekelberg B: Retinal and cortical effects of transcranial electric stimulation. Journal of Vision 2011, VSS Abstracts. AbstractPoster

2010

Kar, K., Moustafa, A., Myers, C., Gluck, M : “Using an animal learning model of the hippocampus to simulate human fMRI data,” Bioengineering Conference, Proceedings of the 2010 IEEE 36th Annual Northeast , vol., no., pp.1-2, 26-28 (March 2010)Short Paper